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Abstract We present an adaptive density-guided

approach for the construction of Born–Oppenheimer

potential energy surfaces (PES) in rectilinear normal

coordinates for use in vibrational structure calculations.

The procedure uses one-mode densities from vibrational

structure calculations for a dynamic sampling of PESs. The

implementation of the procedure is described and the

accuracy and versatility of the method is tested for a

selection of model potentials, water, difluoromethane and

pyrimidine. The test calculations illustrate the advantage of

local basis sets over harmonic oscillator basis sets in some

important aspects of our procedure.

Keywords Potential energy surfaces � Grid construction �
Adaptive density-guided approach � Vibration �
Vibrational self consistent field

1 Introduction

Within the Born–Oppenheimer (BO) approximation, the

atomic nuclei move in a potential generated by the

electrons. For all but the simplest molecules, the large

dimensionality of the energy hyper-surface (3N - 6 or

3N - 5 for linear molecules, where N is the number of

atoms in the molecule) prevents the calculation of the fully

coupled potential. The standard route is, therefore, to retain

in the expansion of the potential only a selection of the

mode couplings (MCs) or entire classes of MCs [1–7]. The

approximate potential energy surface (PES) could, for

example, include all one- two- and three-mode coupling

terms while the higher mode couplings are simply

neglected.

Even if a restricted MC representation of the fully

coupled potential effectively addresses the issue of the

large dimensionality of the quantum dynamical problem,

an efficient implementation of the procedure has to provide

an accurate representation of the potential surface with as

few electronic structure calculations as possible. In order to

achieve such efficiency the PES should be sampled in the

relevant configurational space and this depends in a more

or less complex way on the number and character of the

quantum states and/or dynamics of interest. The latter point

is apparently an aspect which is often taken into account

manually in the construction of PESs for vibrational

calculations.

In a recent work [8], we outlined a strategy for an

efficient sampling of the PES in a set of grid points input by

the user. In this article, we describe an adaptive density-

guided approach (ADGA) that allows for a dynamical

generation of the set of grids onto which each of the

potential energy terms included in the restricted mode-

coupling expansion of the fully coupled PES (vide infra)

are evaluated. In the ADGA scheme, the optimal grid

extensions and the mesh of grid points are determined

iteratively by using approximate densities for the target

states in the calculation; the PES generation step and the
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vibrational structure calculation are combined in such a

way that outputs of the vibrational calculations are used to

estimate where the next set of evaluation points (i.e. single-

point electronic structure calculations) have to be added in

the grid domains, until specific convergency criteria are

met.

Our procedure, in some sense, generates the potential

and the wave function hand in hand. Thus, the configura-

tional space explored in the potential sampling is adjusted

relative to the vibrational quantum states calculated, thus

assuring that in the calculation of the states of interest only

the relevant part of the potential comes in play. Clearly,

there must be some assumptions and approximations

behind this and they will be described and discussed

throughout the article. However, as we seek to develop

quantum dynamical methods for larger molecular systems,

we must create methods that automatically put the

emphasis where it is needed. In this way, savings in man-

time and computer-time can be achieved while, at the same

time, the accuracy of the PES increases since it is ensured

that enough points are distributed in critical regions.

The idea of calculating only points of the potential

according to need is not new. The direct dynamics

approach to classical molecular dynamics is a simple

example, where each potential value and derivative (the

force) are calculated on the fly when needed for the

numerical integration of the classical equations of motion.

Also in vibrational structure theory direct algorithms have

been developed where the points needed for calculating the

vibrational wave function are obtained by calling an elec-

tronic structure program [9, 10]. The idea followed in the

ADGA is somewhat different in that (i) we actually build

up an intermediate potential representation in contrast to

the classical direct dynamics approach above and (ii) we do

not define before hand the parameters of the grids of points

that have to be calculated as the aforementioned direct

methods and as was done in our previous work [8]. In some

sense, our approach is in the spirit of the growing a surface

strategy of Collins et al. [11] where a surface is generated

based on classical mechanical simulations of a reactive

event, will be later used in a more advanced calculation. In

our context, we use quantum wave functions for bound

vibrational motion obtained at some level of theory as a

guide in identifying the important contributions to the

potential. This potential may subsequently be used in

conjunction with more extensive wave function calcula-

tions. Other recent works, such as the neural network

approaches of Manzhos and Carrington [12, 13], and the

approach of Dawes et al. [14, 15] based on interpolating

moving least squares are also worth to cite. We also refer to

the literature for recent discussions on other issues relating

to effective and accurate PES construction, such as fitting

methods with advanced selection of evaluation points [16],

permutational invariance [17], and more general coordi-

nates [18, 19]. We also point out that Rauhut[5] discussed

iterative approaches as means of error control and, in

conclusion, with other clever tricks, reported huge com-

putational savings.

The idea underlying the ADGA procedure to be dis-

cussed, namely the use of the density of the wave function

for nuclear motion in the decision steps of the iterative

algorithm, is worth to emphasize. In the expectation value

of the potential, the potential is multiplied with the density

in the integral, hVi ¼
R

qðqÞVðqÞ dq: The ADGA takes

advantages of this in an iterative build up of the analytic

form of the potential, emphasizing regions of space with

large contributions to such average values, while less

attention is given to regions with small values for the

density times potential. Although the concept is explored

here within our particular setup and directly aimed at an

efficient calculation of potential energy and molecular

property surfaces for vibrational structure calculations, the

basic idea can conceivably be extended to other setups

(including some of the before mentioned) and other final

goals. The basic algorithm can be combined with other

important techniques to further reduce the number of cal-

culated points, such as the explicit use of the molecular

symmetry and the complete neglect of some mode-com-

binations [5–7, 20]. Furthermore, the combination of

different levels of electronic structure theory [5, 6, 7, 8,

15], as well as the use of various interpolation schemes,

and derivatives [7, 8, 11, 15, 21] can boost the efficiency of

the proposed method. The main features of the ADGA can

be appreciated without these important tools. However,

even if they are not considered explicitly here, they are

currently under investigation in our group.

Since the vibrational wave functions control the

dynamic generation of the PES through the density, so will

the choice of the one-mode primitive basis used in the

vibrational structure calculations. This aspect has been

explored as well in the article. We have implemented a

semi-local basis set constituted of distributed gaussian

functions, augmenting the existing harmonic oscillator

basis available in the MidasCpp [22] suite of vibrational

structure programs. The use of distributed Gaussians has a

long history [23, 24] and has been used many times in

combination with vibrational wave function calculations.

The basic aspects of the gaussian basis sets will be briefly

described to fully define our calculations.

The article is organized as follows: in Sect. 2, we

describe the algorithm used for the generation of the grids

of evaluation points, while in Sect. 3 the basic features and

implementations of the gaussian basis set for vibrational

calculations are reported. The computational details are

presented in Sect. 4. In Sect. 5, the procedure is applied to

the calculation of anharmonic vibrational energies of
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model potentials such as the Morse oscillator, a double-

well potential model, as well as water, difluoromethane and

pyrimidine. For water we use the accurate analytic repre-

sentations of the BO potential from Partridge et al. [25]

while the potential energy values for difluoromethane and

pyrimidine are calculated at the density functional theory

(DFT) level, by using the DALTON quantum-chemistry

code [26] and GAMESS suite of codes [27], respectively.

Results are compared to calculations based on a standard

non-iterative grid approach. Our conclusions and perspec-

tives are then summarized in the final Sect. 6.

2 Description of the method

In the following, the implementation of the ADGA

approach is outlined. We start by defining the Hamiltonian

form we use and the expansion of the fully coupled BO

potential in terms of restricted mode-coupling contribu-

tions. The procedure adopted for obtaining an analytical

representation of the potential, in a form suitable for the

subsequent vibrational structure calculations, will be

briefly summarized, followed by a short account of the

parametrization used for the molecular vibrational wave

function. The main features of the new implementation are

fully documented in the final section.

2.1 The vibrational Hamiltonian and the potential

energy operator

For a non-rotating molecular system, assuming the BO

approximation, the Hamiltonian in terms of normal coor-

dinates reads [8, 28]:

H ¼ �1

2

X

k

o2

oq2
k

þ 1

2

X

ab

palabpb �
1

8

X

a

laa þ V qð Þ: ð1Þ

In Eq. 1, pa and lab are Cartesian components of the

vibrational angular momentum and the inverse of the

effective moment of inertia, respectively (for further details

and a discussion of the implementation of the Watsonian in

MidasCPP, we refer to [8]). V(q) in Eq. 1 is the BO

potential energy operator. The kth normal coordinate is

denoted qk and q denotes the vector of all normal

coordinates. Often the terms involving the inverse

effective moment of inertia are neglected, which leaves

us with the following Hamiltonian:

H ¼ �1

2

X

k

o2

oq2
k

þ V qð Þ: ð2Þ

Due to its large dimensionality, (the number of

vibrational degrees of freedom, M), the computation of the

potential energy term is by far the most time-consuming part

in the construction of the Hamiltonian, and can generally

only be accomplished in an approximate fashion. A widely

used approach in studies of vibrational dynamics is to

approximate the full potential, V(q), in a hierarchical manner

including potential energy terms of lower dimensionality up

to a certain level [1–5]:

V ð1Þ;V ð2Þ;V ð3Þ; . . .;VðMÞ: ð3Þ

To this aim, a set of potential energy functions (PEFs)

are defined which include the coupling among a subset n of

the M coordinates:

Vm1 ¼ Vð0; . . .; 0; qm1
; 0; . . .; 0Þ

Vm1;m2 ¼ Vð0; . . .; 0; qm1
; 0; . . .0; qm2

; 0; . . .; 0Þ
ð4Þ

and so forth up to Vm1;m2; ...;mM ; the fully coupled potential,

V(q). For the sake of simplicity the set of modes (referred

to as a mode combination, MC, hereafter) defining the

particular PEF are collected in an n-dimensional vector mn,

so that a n-dimensional PEF is denoted as Vmn : Note that

Vmn is symmetric with respect to the permutation of mode

indices in mn. One typical way to calculate the PEFs,

commonly known as a grid approach, is to compute the

potential energy values on a set of grid-points and inter-

polate or fit functions accordingly.

The PEFs can be used to define the sequence of potential

energy terms (see Eq. 3) that converge to the fully coupled

potential. However by summing over all MCs over-coun-

tings are introduced since each PEF includes all the lower-

dimensional PEFs corresponding to the set of mn0 � mn:

Following the general formalism of [2] we introduce

potentials V
mn

defined such that:

V
mn ¼ Smn

Xn

l¼1

ð�1Þn�l n

l

� �
Vml ð5Þ

where Smn is an operator that symmetrizes with respect to n

and m indices. Note that by construction, V
mn

vanishes if

any of the n internal coordinates is zero [2]:

�Vmnð. . .; qi ¼ 0; . . .Þ ¼ 0: ð6Þ

Thus the following expression defines one hierarchy of

potentials converging to the exact limit, for n = M, the

total number of vibrational degrees of freedom:

V � V ðnÞ ¼
Xn

k¼1

X

mk

V
mk : ð7Þ

Generally, one may include in the expansion only the

MCs that are relevant for the representation of the potential:

V ¼
X

m2MCRfVg
V

m
; ð8Þ

where MCR is a mode-combination range - the set of MCs

we want to include in the potential.
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2.2 The analytical representation of the potential

and vibrational wave functions

In this work, we adopt a grid-based approach for potential

sampling, fully documented in [8]. Very briefly, at a given

mode combination level n, the Vmn PEFs, are sampled in a

set of grid points by means of ab-initio electronic structure

calculations. From the Vmn PEFs the V
mn

terms of Eq. 5

are generated and an analytic form is obtained via a

polynomial fitting procedure. The multidimensional linear

least-squares fitting is realized in a direct product polyno-

mial basis using frequency-scaled mass-weighted normal

coordinates, yi ¼
ffiffiffiffiffi
xi
p

Qi; where xi is the classical har-

monic frequency for the ith normal motion [8]. Through

the fitting procedure, the vibrational Hamiltonian is cast to

a sum over T products of single particle operators:

Ĥ ¼
XT

t¼1

ct

YM

m¼1

ĥ
m;t
: ð9Þ

where ct are expansion coefficients and each term in the

summation is a product of M one-mode operators, hm,t, of

the form qm
n or a derivative (d/dqm)n (with n� 0 and

qm
0 = (d/dqm)0 = 1). The computational advantages of

Hamiltonians of the form in Eq. 9 are important and well-

established in time-dependent quantum dynamics [29] and

in vibrational structure theory [30]. The fitting step is

therefore a convenient step for the representation of the

vibrational Hamiltonian in a sum over-product form which

can be handled by the MidasCpp suite of vibrational pro-

grams. We use simple polynomial qm
n but the procedure can

easily be extended to other functions.

In MidasCpp, the calculation of vibrational energies can

be done with a variety of approximate vibrational structure

methods, such as VSCF [31–33], arbitrary order vibrational

Møller-Plesset, (VMP) [4, 9, 34, 35, 36], and vibrational

configuration interaction (VCI) [32, 33, 37, 38, 39, 40]

parameterizations as well as newer (second quantization

based [41]) approaches such as vibrational coupled-cluster

(VCC) [40] and vibrational response theory [42, 43].

Within the ADGA approach, the calculation of molecular

vibrational wave functions is required in two crucial steps.

In the first step as a source for providing an effective

density of the vibrational wave functions during the itera-

tive construction of the PES. Once a converged PES has

been obtained, a final calculation (VCI, VMP, VCC) gives

the vibrational levels of interest. The first step is repeated

many times during the construction of the potential, and

high efficiency is therefore important and for simplicity we

use VSCF. The VSCF wave function and densities rigor-

ously separate into a product form, and furthermore VSCF

is exact for uncoupled modes. We note that it has been

illustrated very recently [44] that VMP, VCI, and VCC

wave functions with two-mode coupling can be very effi-

ciently implemented, so it is certainly a realistic future

perspective to use also correlated wave functions in the

initial step. However VSCF is anticipated to be good

enough for the systems investigated in the present article,

and for the purpose of illustrating the basic features of our

procedure.

2.3 The ADGA for PES sampling

The previous implementation of the potential sampling

driver [8] has been extended to allow for a dynamic gen-

eration of the grid of points on which each Vmn term is

evaluated. The new implementation should be therefore

contrasted with the former where static grids were gener-

ated at the outset by specifying grid boundaries and the

number of evaluation points. One shortcoming of the latter

approach relates to the difficulties associated with a careful

tailoring of the grids for the molecular system at hand. In

the new procedure, at each iteration step, output from the

vibrational structure program is used as a guide for

the placement of the new set of evaluation points, and the

accuracy of the sampling procedure is always monitored.

The procedure uses one-mode density informations from

VSCF runs for the determination of the grid boundaries on

which each one-mode coupling potential term, Vm1 ; is to be

sampled. When the adaptive procedure is converged for the

one-mode coupling terms of the potential, the one-mode

grid boundaries obtained define the extension of the grids

where the higher mode-couplings (n [ 1) terms of the

potential will be sampled. In a multidimensional sampling,

a direct product grid is employed. At each mode coupling

level the adaptive procedure stops when specific conver-

gence criteria are met, as outlined below. Then the iterative

sampling is continued up to the maximum mode-coupling

level used in the expansion of the potential in Eq. 3. Since

one-mode grids are generated slightly differently compared

to the multidimensional ones, we will describe the adaptive

procedure separately for the monodimensional and multi-

dimensional cases.

2.3.1 Adaptive generation of the monodimensional grids

The implementation is based on the partition of the con-

figuration space into sub-sectors defined as the intervals

between two adjacent sampling points. For each vibrational

coordinate the procedure starts with the evaluation of the

potential at the boundaries of the input grid (see Fig. 1a) as

in our static grid setup [8]. The initial boundaries for the

monodimensional grids can be specified by the user

through input of a non-negative integer v in such a manner

that the cut-off in the ith normal coordinate axis

416 Theor Chem Acc (2009) 123:413–429
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corresponds to the classical turning point, xi,TP, for the

harmonic motion in that direction

xi;TP ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�h

x
vþ 1

2

� �s

: ð10Þ

Alternatively, the initial grid boundaries can be explicitly

given in the input by the user.

An analytical representation of the Vm1 terms is then

provided via a polynomial fitting. The potential is then

used in a VSCF calculation for the ground vibrational state.

The VSCF modals are then read back by the program and a

VSCF mean vibrational density for mode qm is constructed:

qavðqmÞ ¼
PN

im /m
imðqmÞ

�
�

�
�2

N
ð11Þ

In Eq. 11, N is the maximum number of modals

included in the evaluation of the average density and is

input by the user; /m
imðqmÞ are the set of VSCF modals for

mode m. By construction, the average density integrates to

one over the entire domain, a feature used later in the

optimization of the grid boundaries. One can alternatively

construct a maximum density for the given number N of

modals: qmaxðqmÞ ¼ max½1;2; ...;Nm� /
m
imðqmÞ

�
�

�
�2: Nevertheless,

for sake of simplicity, we will exclusively use the mean

density in the remainder of this article.

Before the first iteration is started, testing points are

placed in the middle of each sub-interval, and given the

density information from the vibrational structure calcu-

lation and the analytical representation of the potential, the

program evaluates the following integral
Z

qðqmÞVm1ðqmÞ dqm ð12Þ

for each of the four sub-intervals. Integration is performed

with a standard Gauss–Legendre (GL) quadrature scheme

and the integral values are stored.

The first iteration starts with the explicit evaluation of

the potential for each of the newly added testing points by

means of electronic structure calculations (see Fig. 1b). An

updated analytical representation of the Vm1 is then

obtained via a polynomial fitting, and a new mean vibra-

tional density is computed in a ground-state VSCF

calculation. New values of the integral qVm1 of Eq. 12 are

then calculated for each of the four sub-intervals defined in

the preceding iteration, and compared with the stored

values.

A further testing point is added at the middle point of the

intervals for which the condition
R
ðqnewVm1

newÞ dqm �
R
ðqoldVm1

old Þ dqmR
ðqnewVm1

newÞ dqm
\�rel: ð13Þ

is not fulfilled. In other words, an interval where the rela-

tive variation of the integral value of qVm1 between two

iterations is found larger than a specified threshold (usually

of the order of 1.0%) is further subdivided with the addition

of a new testing point.

Note that the quantity defined in Eq. 12 can be regarded

as a measure of the energy contribution from the given

interval for mode m. For this reason it was decided that

intervals with a small contribution to the energy should not

be further subdivided, regardless of the relative error

computed by means of Eq. 13. In particular, a sector is not

further divided if the condition
Z
ðqnewVm1

newÞ dqm �
Z
ðqoldVm1

old Þ dqm\�abs

^
Z
ðqnewVm1

newÞ dqm\�abs ð14Þ

is fulfilled, with �abs being usually of the order of 10-6.

The algorithm is therefore designed to require the cal-

culation of additional evaluation points (i.e. single point

energy calculations) in regions of the grid domain where

sensible variations of the integral in Eq. 12 are observed

between two successive iterations.

The density information is also used as a guide for the

determination of the extension of the monodimensional

grids. The number of modals N included in the calculation

of the mean density of Eq. 11 for each vibrational mode

relates to the number of vibrational states that needs to be

evaluation evaluation evaluation 

q m

E
ne

rg
y

0

0−b b

(a)

q m

E
ne

rg
y

0

0−b b

(b)

q m

E
ne

rg
y

0

0−b b

(c)

point point point

Fig. 1 Graphical representation of the adaptive procedure for the

determination of the monodimensional PESs. a Iteration 0: two

evaluation points (placed at the position of the grid boundaries

specified in the input) are considered, together with the equilibrium

geometry (qm = 0), defining thus two sub-intervals. b Iteration 1:

evaluation points are placed in the middle points of the sectors defined

in a. c Extension of the grid outside the initial boundaries
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accurately calculated. Therefore, the number of vibrational

states of interest controls the size of the monodimensional

grid and determines the extension of the configurational

space of the PES explored in the whole iterative procedure.

This feature is highly desirable for an automatic procedure

that constructs a semi-global representation of a potential

energy surface since it ensures that the vibrational wave

functions are localized in the configurational space

explored with the evaluation points, i.e. a variational wave

function does not fall into artificial ‘‘holes’’ of the PES, see

also later. Moreover, since the potential is sampled only in

the regions needed for accuracy of the requested states,

evaluation points are not placed in regions where the

solution of electronic problem is irrelevant and perhaps

more difficult.

The procedure for the automatic extension of the grid

boundaries relies on the fact that the integral, over the full

configurational space, of the mean density, Eq. 11, is equal

to one. The program checks that the integral value of the

mean density summed over the sub-sectors approaches 1

according to:

X

i

Z

i

qavðqmÞ dqm [ 1� �q ð15Þ

where i defines the ith sub-sector and �q is the fraction of

density allowed to be outside the grid domain (in our tests

�q ranges between 10-2 and 10-4). If the condition of Eq.

15 is not fulfilled, the program extends the grid (see

Fig. 1c).1

The adaptive procedure stops when all the convergency

criteria of Eqs. 13–15 are met for each of the sub-intervals

generated in the current iteration.

2.3.2 Adaptive generation of the multidimensional grids

The adaptive construction of the multidimensional grids is

a straightforward generalization of the procedure outlined

above. However, some distinctions are needed. First, the

multidimensional grids are not allowed to extend beyond

the boundaries defined by the corresponding monodimen-

sional ones. Moreover, the multimode densities needed in

the convergency checks (the convergency criteria are

multidimensional generalizations of Eqs. 13 and 14) are

taken for simplicity to be a direct product of the converged

one-mode densities as:

qðqm1
; qm2

; . . .; qmn
Þ ¼ qðqm1

Þ � qðqm2
Þ � � � � � qðqmn

Þ
ð16Þ

Such a product form holds for one state described by a

VSCF wave function, but does not hold exactly for

densities averaged over several states and for correlated

wave functions. Clearly, the use of correlated densities

could be considered.

In the current implementation, the procedure converges

hierarchically up to a user specified maximum mode-

combination level, i.e. monodimensional contributions are

converged before the bi-dimensional and so on. This allows

to use the converged analytic representation of the Vmn0

during the construction of the �Vmn when the mode-com-

bination mn’ is a subset of mn. This feature has been

implemented as an option in the program.

It is worth to note that a specific grid is adaptively

constructed for each of the multidimensional MCs, i.e. the

multidimensional grids are not simply obtained as direct

product of the corresponding monodimensional grids.

A graphical representation of the procedure for the adap-

tive construction of bi-dimensional grids is reported in

Fig. 2 with a detailed explanation in the caption.

Since the bi-dimensional and higher dimensional sur-

faces are known to be zero along axis/planes where any

coordinate is zero (see Eq. 6) and, at least, can be assumed

to be small in some domains, one may conceivably choose

a zero function as the zero-th iteration estimate of the real

surface. If the function values are indeed essentially zero

for a particular mode-combination in the first iteration,

further iterations are avoided for that specific cut of the

PES. This illustrates clearly what is achieved and not

q m

q m’

q m

q m’(b)

m,l(b    ,b     )m’,l

(a)
m,r m’,r(b    ,b     )

Fig. 2 Graphical representation of the adaptive procedure for the

determination of the bi-dimensional PESs. a Four evaluation points at

the boundaries of the corresponding monodimensional grids are

considered in the first iteration (black filled squares). Together with

the points already calculated for the monodimensional surfaces (white
filled square), the available points define four sub-sectors (one
highlighted). b Example of subdivision of a sector in the

bi-dimensional procedure: the new evaluation point (black filled
triangle) is placed in the middle of the sector. Due to the direct

product representation, extra evaluation points have to be computed

(circles) and the bi-dimensional surface is eventually partitioned into

nine sub-sectors (one highlighted).

1 In relation with the check of Eq. 15, the extension is set to 1/8 of the

initial spanned space. The program evaluates the amount of density

recoverable in a specific direction by assuming a linear decay of the

density outside the grid boundaries; if the estimated residual density is

larger than half of �q; the extension is trigged on. If the condition of

Eq. 15 is not fulfilled, but none of the contributions in either direction

is found large enough to trigger on the extension, i.e. due to an

erroneous estimate of the density recoverable, the grid is extended in

both directions with 1/16 of the initial grid domain.
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achieved by the adaptive approach: some points need to be

calculated for each MC, but only few points are needed if

the particular mode combination turns out to be unimpor-

tant, while more points will be calculated in case of a

strong and complicated coupling. The sampling of a

bi-dimensional surface will thus require a minimum of four

points. Getting rid of the MCs without ever calculating this

minimal number of points is considered to be another, very

interesting, activity of research, but is outside the scope of

this article.

As a final remark, the ADGA can be used to converge

not only the analytic representation of the PES but also the

analytic representation of any molecular property surfaces

since in all technical aspect molecular properties are han-

dled in the same way as the energy. For tests and

performance of the ADGA with respect to the construction

of molecular property surfaces we refer to a later work.

2.3.3 Technical details

The calculation of the grid points in the construction of

potential energy surfaces is an ideal task to be tackled by

parallel computing. Once the individual grid points are

defined, their calculation may be addressed independently:

this goes under the name of ‘‘embarrassingly parallel

problem’’. At each iteration, the ADGA defines a list of

grid points that are to be computed. In our computational

setup, these points are considered in parallel thanks to the

combined action of shell scripts and the queue system. In

this way, a very efficient parallelization of the grid calcu-

lations (by far the most time-demanding part of the

procedure) was achieved. This is, in a certain sense, a proof

of principle for a genuine master–slave parallelization.

Symmetry considerations can give a substantial speed

up in the construction of PES for small and medium-sized

molecules. In the current implementation of the ADGA the

use of the symmetry properties of the PES are not exploited

to reduce the number of single point calculations, though

symmetry is used for the individual points. The imple-

mentation of a strategy to exploit symmetry seems

straightforward into the current algorithm, in fact, when a

specific grid point is requested, the algorithm can check if

symmetry related points have been already requested. If the

grid point is recognized as symmetrically related to an

other one, it will be not explicitly calculated but its prop-

erty values will be duplicated from its symmetry related

point. The use of symmetry to reduce the number of

explicit calculation is currently under development in our

group and this aspect will be considered in future appli-

cations. The neglect of symmetry does not affect the

forthcoming discussion on the computational efficiency

and accuracy of the ADGA approach compared to the

static-grid implementation [8] since computational savings

due to symmetry considerations represent a common factor

in speed-up for both the static and the ADGA approaches

compared in this work. Note also that our aim in this article

is to investigate the usefulness of density information in

guiding molecular PESs construction, rather than providing

the most efficient implementation of the new concept

introduced.

3 Localized Gaussian basis

Although harmonic oscillator wave functions provide a

good zero order description for the lowest vibrational states

of rigid molecules, their global nature requires the sam-

pling of large portions of the molecular PES when

functions of high vibrational quantum number are used for

expanding the modals. An incorrect sampling of the outer

portions of the potential surface can cause instabilities in

the vibrational calculation due to contamination of low-

lying vibrational states from higher excited ones. We

therefore implemented and tested the performance of a

localized basis set of distributed Gaussians functions for

expanding the modals, within the procedure presented in

the article.

Note that in the step determining the optimal extension

of the sampling grid, the adaptive procedures requires that

the vibrational wave function probes the space immediately

outside the boundaries of the grid. Therefore, the support

for the localized basis is chosen to go somewhat beyond the

boundaries.2

We consider a set of distributed Gaussians, of the

independent variable x:

GiðxÞ ¼
2fi

p

� �1
4

expð�fiðx� ZiÞ2Þ ð17Þ

Each individual Gaussian indexed by i is centered at Zi 2
½a; b� and has exponents fi. Thus, the set of Gaussians are

specified by the set of Zi and fi. A particular simple

Gaussian basis set is provided by the case of an equidistant

set of points with identical exponents, so the set of

Gaussians can be specified by four numbers: the upper and

lower bounds of the interval where the Gaussians are

distributed, namely a and b, the total number of Gaussians

N, and a common exponent f. We can define a basis set

density as:

q ¼ N

b� a
: ð18Þ

2 It was found adequate to enforce the support for the localized basis

set to be 50% larger (with a maximum allow 20 a.u.). than the space

spanned by the evaluation points.
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The individual Gaussian’s centers are given by:

Zi ¼ aþ b� a

N � 1
� i ð19Þ

where i ¼ 0; 1; . . .;N � 1: In practice there has to be a

balance between the density of the basis set, Eq. 18, and the

exponents f, in order to avoid linear dependencies in the

basis. In our implementation the exponents are generated as

suggested by Hamilton et al. [23] fi ¼ 4c2=ðZiþ1 � Zi�1Þ2
for the Gaussians centered in the interior points and f1 ¼
c2=ðZ2 � Z1Þ2 and fN ¼ c2=ðZN � ZN�1Þ2 for the Gaussians

centered on the boundaries of the interval [a,b]. The c

parameter is the generator of the Gaussian’s exponents, and

sensible values [23] range between 0.5 and 1.1. For a

polyatomic molecule with M vibrational modes, each mode

has its own basis set. The program can generate a set of

localized Gaussians in several ways. One way is to define

explicitly the interval boundaries, the c parameter and the

number of basis functions or the density of the Gaussians,

Eq. 18, for each of the vibrational coordinates. Alterna-

tively the program accepts in input a vector of M integers

specifying the number of basis functions or M real numbers

for the basis set densities. The interval boundaries for each

of the M vibrational coordinates can be read from file to

correspond to those defining the grid extensions in the PES

sampling procedure or can be generated through input of a

non-negative integer v to correspond to the classical turning

point for the harmonic motion in that direction. Gaussians

are then evenly distributed between the boundaries.

The calculation of integrals for polynomial expanded

potentials can for the Gaussians functions be done analyt-

ically, and are detailed in the Appendix for completeness.

4 Computational details

One-mode densities used in the adaptive procedure are

obtained after VSCF calculations on the ground vibrational

state. Since a VSCF wave function is exact for a system of

a single mode of vibration, VSCF calculations have been

performed in the monodimensional test cases. For water we

use Full-VCI (FVCI) parameterization of the wave func-

tion, whereas a VCI[gs,4] wave function is used for

difluoromethane to compare with previous work. In a

VCI[gs,4] calculation [40] all configurations, which have

up to four excited modes relative to the VSCF ground-state

are included. In the case of water, the lowest 15 VSCF

modals per mode were retained in the FVCI calculations,

whereas the 6 lowest modals per mode were used in the

VCI[gs,4] on difluoromethane. For pyrimidine, the second

order vibrational Møller–Plesset (VMP2) Perturbation

Theory was adopted, with the inclusion in the correlated

calculation of the lowest eight VSCF modals per mode.

In addition to HO wave functions, the use of localized

Gaussian basis sets has been explored for all the cases

presented. The HO basis is specified by a maximum

vibrational quantum number and we report some tests of

the sensitivity on this number for each of the molecules

investigated in the article. The exponents for the HO

basis are obtained from the quadratic term of the

potential. The Gaussian basis sets were generated given a

density value, Eq. 18, for the functions equal to 0.8. The

exponents of the Gaussians were generated according to

Hamilton et al. [23] (see Sect. 3 above) with c = 1.

These settings may easily generate around 100 basis

functions per mode, but this is not a problem in the very

fast VSCF calculations.

While a spline interpolation technique prior to the fitting

procedure was found useful to avoid spurious oscillations

in the fitted surfaces within the static grid framework, it is

not used in the ADGA as the new algorithm would auto-

matically detect and correct artifacts in the fitting. In fact,

the ADGA proved to be more stable and economic without

spline interpolation. The maximum polynomial degree

used for the fitting of the monodimensional and multidi-

mensional surfaces is 12, except in the double-well

problem where it was set equal to 14. We checked that the

analytic representation of the PES is converged with

respect to the maximum order of the fitting polynomials

(variations in the maximum order of the polynomial gave

variations of less than 0.01 cm-1 in the vibrational ener-

gies). In the early cycles of the iterative procedure few

evaluation points are available and the maximum degrees

of the fitting polynomials are reduced to n - 1 with n

being the number of evaluation points.

5 Sample applications

5.1 The Morse potential

A standard model for approximating the potential of a

diatomic molecule is given by the Morse function:

VðqÞ ¼ De 1� e�aðq�qeÞ
� �2

ð20Þ

where V(q) is the potential energy, De is the dissociation

energy and qe the equilibrium distance, while a is a

parameter controlling the width of the potential well. The

parameters chosen in the simulation are De = 0.1026, re =

1.9972 and a = 0.732 in atomic units, and the curve

approximates the potential of the ground state of the H2
?

molecule. The advantage of the use of the Morse potential

for benchmark is due to the fact that the exact solutions for

the eigenstates are available analytically and the corre-

sponding results are reported in Table 1.
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In Table 1, the ability of the adaptive procedure to

construct an accurate representation of the potential as a

function of the number of the states addressed and the

amount of mean density allowed outside the grid, �q; is

tested. The fraction of the mean density inside the grid

boundaries is consistent with the corresponding thresholds,

as can be seen from the results in the first row of Table 1.

Moreover, the analysis of the data reveals that the agree-

ment with the analytic results is quite good even when the

less tight threshold (�q ¼ 10�1) is used (with this set up, the

ADGA uses 4 iterations to converge). The agreement is

improved when �q is reduced by an order of magnitude,

requiring only a few more evaluation points. A further

decrease of �q does not bring any improvement (but it

requires a few more evaluation point as well as 1–2 extra

iterations), confirming that the results are converged for the

particular calculation settings. The energy values pertain-

ing to the states not directly addressed in the calculations

are emphasized in italic in Table 1. It can be observed that

fair agreement is obtained for the lower states when the

density threshold is low. The analysis of the tabulated

results suggests that a good compromise between accuracy

and computational efficiency is achieved with a threshold

value of �q ¼ 10�3:

Concerning the choice of the initial grid boundaries, the

use of the classical harmonic turning points corresponding

to the nth state, n being the highest state of interest (or a

state 1–2 units lower than the highest state of interest) is

found to be a good compromise.

We report an analysis of the convergence of the vibra-

tional energies with respect to the absolute and relative

thresholds (�abs and �rel) controlling the subdivision of the

sub-sectors in Table 2. Moreover, the influence of the

primitive basis set used in the VSCF calculation is

explored. In all the cases, the AGDA converged within 8

iterations and the number of evaluation point ranges

between 23 and 30 for all the tests but the final one (vide

infra). Clearly, the energy levels of the Morse potential are

well reproduced up to the state v = 5 by using 30 HO

functions and the less tight convergence criteria ð�abs ¼
10�5; �rel ¼ 10�1Þ: On the other hand, the vibrational

energies for the 0?6 and 0?7 transitions are poorly

reproduced. These vibrational energies do not improve

after the use of tighter thresholds suggesting that these

errors are not dependent on the adaptive procedure itself.

This is confirmed by the second set of calculations: in this

case, by simply increasing the number of primitive HO

basis functions up to 50, an excellent accuracy is achieved

for all of the requested transition energies.

Given that the procedure here described is meant to be a

‘‘black box’’ tool for the generation of highly accurate PES,

the behavior observed in the first two sets of ADGA cal-

culations should be avoided. We therefore explored the use

of localized Gaussian functions as primitive basis for the

vibrational calculations. The centers of the Gaussian

functions are equidistantly placed and the density of the

basis is kept constant in the adaptive procedure. This

means that the number of basis functions increases as the

Table 1 Vibrational transition energies in the Morse potential as a function of the number of states and the density threshold, eq, used in the

adaptive construction of the PES

Exact Adaptive approacha

Two statesb Four statesc Six statesd

eq 10-1 10-2 10-3 10-1 10-2 10-3 10-1 10-2 10-3

%q 93.17 99.63 99.94 91.05 99.77 99.98 90.66 99.64 99.97

# calc. 18 20 23 15 19 21 19 22 24

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2,273.75 0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01

4,419.41 0.15 -0.01 -0.01 -0.02 -0.01 -0.01 -0.01 -0.01 -0.01

6,436.97 1.30 -0.06 -0.04 -0.12 -0.01 -0.01 -0.01 -0.01 -0.01

8,326.44 7.18 -0.45 -0.29 -0.88 -0.01 -0.01 0.01 -0.01 -0.01

10,087.82 29.84 -2.60 -1.81 -5.09 0.19 0.13 0.33 0.11 0.11

The differences between the analytic and VSCF values are reported (cm-1). A basis set of 30 HO functions is used in the VSCF calculations.

Numbers in italic refer to energy levels of the states not included in the evaluation of the mean density
a The thresholds for the convergence of the sub-sectors are erel = 10-2 and eabs = 10-6

b The states corresponding to v = 0, 1 are used in the computation of the mean density, and the classical harmonic turning point of the state

v = 0 sets the initial boundaries
c The states corresponding to v = 0-3 are used in the computation of the mean density, and the classical harmonic turning point of the state

v = 2 sets the initial boundaries
d The states corresponding to v = 0-5 are used in the computation of the mean density, and the classical harmonic turning point of the state

v = 4 sets the initial boundaries
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configurational space spanned in the adaptive procedure

increases. The results obtained with the Gaussians basis set

are found extremely accurate even with the less tight set of

thresholds. This confirms the flexibility of the localized

basis sets in following the gradual expansion of the sam-

pling grid, while saturating the area of interest. A drawback

of the use of the localized basis set is the greater number of

evaluation points required with the tighter thresholds. In

particular, the number of calculations doubles, because the

localized basis sets confine the vibrational wave function in

space and therefore the density. Whenever the grid

expands, the wave function relaxes in space, and this

provides a ‘‘global’’ change in the qV quantity that may

trigger the subdivision of several of the inner sub-sectors.

Nevertheless, it should be considered that, under normal

circumstances, the number of calculations required in the

construction of the monodimensional surfaces is never a

bottleneck, and on the other side, the optimization of the

boundaries achieved by using localized basis helps to

minimize the number of evaluation points on the multidi-

mensional surfaces which is much more critical. In order to

overcome this drawback of the localized basis in the con-

struction of the monodimensional surfaces it would be

possible to perform a pre-screening of the potential

adopting an inexpensive method of calculation. The

boundaries obtained could be used in the subsequent

adaptive procedure as starting guess, this is expected to

improve the convergence of the PES with respect to the

number of evaluation points and iteration cycles.

In the case of monodimensional surfaces a standard

static grid approach can certainly be optimized by human

influence to use fewer points than the adaptive procedure

while achieving the same accuracy. Nevertheless, this kind

of optimization requires an a priori knowledge of the

surface and implies significant trial-and-error. The ADGA

is fully automatic and does not require any prior knowledge

of the potential surface.

5.2 The symmetric double-well potential

As a second monodimensional model, we consider a

symmetric double-well potential of the form of a harmonic

function perturbed with a Gaussian-type barrier [45]:

VðqÞ ¼ 1

2
x2q2 þ Ae�aq2

: ð21Þ

In our test, we use the parametrization given by Lin

et al. [46] for modeling the inversion mode of ammonia

and their calculated vibrational transition energies were

taken as a reference for benchmark.

From the point of view of expanding a potential around

a stationary point, the double-well problem can be

approached in two different ways: either starting from the

local maximum (transition state of the inversion barrier) or

from one of the two minima. While, the two minima are

treated equivalently in the first case this is not true in the

second case.

Table 3 reports the results obtained with the adaptive

procedure when the maximum of the barrier is chosen as

the reference point. For all the tests considered, the adap-

tive procedure converged within five iterations, and the

vibrational excitation energies obtained are found in

excellent agreement with the reference data of Lin et al.

[46] confirming the robustness of the ADGA. The agree-

ment with the reference data is found to be independent on

the basis set adopted in the vibrational calculation, and, as

observed in the previous example, the use of the Gaussians

basis may imply an increase in the number of evaluation

points required.

Table 4 lists the results obtained when sampling the

symmetric double-well potential starting from one of the

two equivalent minima. With respect to the previous case,

this situation is intrinsically more complicated because the

procedure has to cross the barrier searching for the second

minimum, as a result, the adaptive procedure require more

iteration to converge (10–14).

As shown in Fig. 3, the procedure is capable of recon-

structing the shape of the PES step by step. The results in

Table 4 highlight that an overall good accuracy is achieved

even when employing less tight convergency thresholds.

The use of a set of tighter thresholds does not improve the

quality of the results, but it confirms that the adaptive

Table 2 Vibrational transition energies of the Morse potential as a

function of the eabs and erel thresholds controlling the subdivision of

the sub-sectors in the adaptive construction of the PES

Exact Adaptive approacha

Basis 30 HO 50 HO Gaussians

eabs 10-5 10-6 10-5 10-6 10-5 10-6

erel 10-1 10-2 10-1 10-2 10-1 10-2

# calc. 23 25 23 30 25 50

0.00 0.00 0.00 0.00 0.00 0.00 0.00

2,273.75 -0.01 -0.01 -0.01 -0.01 0.00 0.00

4,419.41 -0.01 -0.01 -0.01 -0.01 0.00 0.00

6,436.97 -0.01 -0.01 -0.01 -0.01 0.00 0.00

8,326.44 -0.01 -0.01 -0.02 -0.02 0.00 0.00

10,087.82 0.11 0.11 -0.02 -0.02 0.00 0.00

11,721.10 3.52 3.52 -0.02 -0.02 0.00 0.00

13,226.29 42.65 42.65 0.02 0.02 0.02 0.01

The differences between the analytic and VSCF values are reported

(cm-1). The eq parameter controlling the extension of the grid

boundaries was set to 10-3

a The states corresponding to v = 0, …, 7 are used in the compu-

tation of the mean density, and the classical harmonic turning point of

the state v = 6 sets the initial boundaries
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procedure provides a PES of excellent quality and the

discrepancy with the references are due to shortcomings of

the basis set in the vibrational calculation, (see the ‘‘50

HO’’ columns in Table 4).

In the case of the double well potential, the side effect of

the increase in the number of evaluation points when low

thresholds are used is particularly pronounced. However,

such effect was expected: at each iteration the global rep-

resentation of the wave function changes significantly due

to the gradual ‘‘discovery’’ of the second minimum and

this, in conjunction with tighter thresholds, triggers the

subdivision of a larger number of sectors near the starting

minimum. A clever choice for the initial boundaries could

reduce the number of evaluation points significantly, but

our aim here is rather to demonstrate that the algorithm

can, by brute force, cope with this difficult situation. While

this can not generally be expected to carry over to the

multidimensional case without additional problems, it does

indicate a significant robustness of the procedure.

The double-well problem provides a clear example on

the shortcomings of the use of a global primitive basis in

the vibrational calculation: the symmetric HO wave func-

tions are not suited for this highly asymmetric (if seen from

one of the minimum) potential and a large vibrational

quantum number has to be chosen to ensure that the basis

functions cover the region far from the starting minimum in

the direction of the second minimum. A lack of basis

function and saturation was found to be the problem for the

‘‘50 HO’’ basis set, 30 more functions had to be included in

the basis set to properly reproduce the reference values.

The use of HO functions with high vibrational quantum

number implies that the space outside the ‘‘controlled’’

region is probed and therefore the wave function risks to

collapse into an artificial hole. The algorithm deals with

these wild oscillations by enlarging progressively the

configurational domain at the expense of an unnecessarily

Table 3 Vibrational transition energies (in cm-1) for the symmetric

double-well potential

Reference Adaptive approacha

Basis 30 HO 50 HO Gaussians

eabs 10-5 10-7 10-5 10-7 10-5 10-7

erel 10-1 10-3 10-1 10-3 10-1 10-3

# calc. 19 29 43 45 19 27

0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.83 0.00 0.00 0.00 0.00 0.00 0.00

932.40 0.06 0.05 0.05 0.05 0.06 0.05

967.80 -0.04 -0.05 -0.05 -0.05 -0.04 -0.05

1,603.00 -0.10 -0.11 -0.11 -0.11 -0.10 -0.11

1,882.80 0.00 0.01 -0.01 -0.01 0.01 0.00

2,385.00 -0.06 -0.06 -0.07 -0.07 -0.05 -0.06

2,891.70 0.02 0.01 0.01 0.01 0.03 0.02

3,453.20 0.00 -0.01 -0.01 -0.01 0.01 0.00

4,047.40 0.02 0.02 0.02 0.02 0.03 0.03

The VSCF results as a function of the thresholds and basis sets in the

adaptive construction of the PES are given relative to the published

data taken from [48]. The potential is expanded around the local

maximum
a The lowest ten states are used in the computation of the mean

density. The eq parameter controlling the extension of the grid

boundaries was set to 10-3

Table 4 Vibrational transition energies (in cm-1) for the symmetric

double-well potential

Reference Adaptive Approacha

Basis 50 HO 80 HO Gaussians

eabs 10-5 10-7 10-5 10-7 10-5 10-7

erel 10-1 10-3 10-1 10-3 10-1 10-3

# calc. 50 320 148 1,251 56 320

0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.83 0.00 0.00 0.00 0.00 0.00 0.00

932.40 0.06 0.06 0.03 0.01 0.05 0.04

967.80 -0.03 -0.03 -0.07 -0.09 -0.05 -0.06

1,603.00 -0.05 -0.05 -0.17 -0.16 -0.13 -0.13

1,882.80 0.23 0.22 -0.05 -0.06 -0.02 -0.02

2,385.00 0.61 0.61 -0.13 -0.12 -0.08 -0.07

2,891.70 1.96 1.95 -0.04 -0.04 0.00 0.01

3,453.20 5.07 5.05 -0.07 -0.05 -0.02 0.00

4,047.40 12.24 12.20 -0.04 -0.02 0.01 0.02

The VSCF results as a function of the thresholds and basis sets in the

adaptive construction of the PES are given relative to the published

data taken from [48]. The potential is expanded around one of the

equivalent minima
a The lowest ten states are used in the computation of the mean

density. The eq parameter controlling the extension of the grid

boundaries was set to 10-3
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Fig. 3 The adaptive procedure applied to the double-well potential:

the potential is gradually expanded from the rightmost minimum to

the leftmost minumum. Offsets in the energy scale are used for the

sake of clarity.
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large number of evaluation points. As a matter of fact, the

converged grid boundaries do not reflect the spatial

extension of the wave functions but of the more diffuse

primitive basis functions. On the other hand, by construc-

tion, the localized basis set is confined in the region where

the analytical PES is well conditioned. The saturation in

the space of interest is automatically achieved in accor-

dance with the ‘‘black box’’ philosophy motivating this

work.

5.3 The water molecule

The water molecule has long been used as a benchmark

system to test the accuracy and the performances of pro-

cedures to calculate vibrational energies of polyatomic

molecules [3, 8, 47]. In this work, we use the spectro-

scopically accurate potential of Partridge and Schwenke

[25]. In all the test calculations the full representation of

the potential has been used in the Watsonian (Eq. 1). The

vibrational excitation energies to the fundamentals and to

the first overtones were addressed.

Table 5 presents a comparison between the reference

vibrational excitation energies [25] for the selected states

of a non-rotating water molecule and those obtained with

both the ADGA presented here and the static grid approach

of [8]. Mean absolute deviations (MAD) and the maximum

absolute deviations (MaxAD) are reported for each calcu-

lation. Two different grid settings were used in the non

iterative approach while the adaptive procedure uses two

different sets of thresholds (see footnotes to Table 5 for

details).

In the standard grid approach, the quality of the results

increases with the number of the evaluation points used in

the potential sampling: the MADs are found to be 0.72 and

0.37 cm-1 for Grid A (1,377 evaluation points) and Grid B

(3,601 evaluation points), respectively. It should be noticed

that, even if the accuracy obtained with the standard grid

approach is clearly satisfactory, the number of evaluation

points needed is rather large. The results listed in Table 5

clearly demonstrate that the ADGA is computationally

more efficient and the MAD of the calculations with the

‘‘loose’’ set of thresholds is comparable with the results

obtained with Grid A, in spite of requiring only 1/3 of the

evaluation points. With the ‘‘loose’’ set of thresholds, the

adaptive procedure converges the 1D, 2D and 3D surfaces

requiring about 60 (6 iterations), 340 (4 iterations) and 64

(2 iterations) energy evaluations, respectively. Moreover, if

the ‘‘tight’’ set of thresholds is used, the number of

Table 5 FVCI transition energies for the fundamental and first overtones vibrations of water for both a static and an adaptive sampling of the

full PES

(m1, m2, m3)a Reference Standard approachb Adaptive approachc

Basis 20 HO 20 HO Gaussians

Thresh Grid Ad Grid Be Loosef Tightg Loosef Tightg

# calc. 1,377 3,601 456 884 462 890

(1, 0, 0) 3,657.04 -0.43 0.05 -0.14 0.00 -0.13 0.01

(0, 1, 0) 1,594.76 -0.04 0.28 -0.44 -0.28 -0.43 -0.27

(0, 0, 1) 3,755.96 -0.74 -0.23 -0.77 -0.28 -0.76 -0.27

(2, 0, 0) 7,201.55 -0.73 0.06 -0.25 -0.10 -0.23 -0.08

(0, 2, 0) 3,151.63 -0.92 -1.16 -1.26 -1.09 -1.25 -1.08

(0, 0, 2) 7,445.12 -1.39 -0.42 -1.80 -0.57 -1.78 -0.55

MAD 0.72 0.37 0.78 0.39 0.77 0.38

MaxAD 1.39 1.16 1.80 1.09 1.78 1.08

Vibrational energies (in cm-1) are given as the difference with respect to the results of [25], mean absolute deviations (MAD) and the maximum

absolute deviations (MaxAD) are reported for each calculation
a m1: symmetric stretch, A1; m2: bending, A1; m3: anti-symmetric stretch, B1

b Static grid approach [8], the classical harmonic turning point of the state v = 4 sets the boundaries for each mode
c The lowest three VSCF modals for each vibrational mode are used in the construction of the average density. The eq parameter was set to 10-3

d The static grids were constructed according to the scheme (321)(161)(81), with a Fine Grid 6 times more dense (see [8] for details)
e The static grids were constructed according to the scheme (481)(241)(121), with a Fine Grid 6 times more dense (see [8] for details)
f The 1D surfaces were converged with erel = 5 9 10-3 and eabs = 5 9 10-7, the 2D surfaces were converged with erel = 5 9 10-2 and eabs =

5 9 10-6 and the 3D surface was converged with erel = 3 9 10-1 and eabs = 3 9 10-5

g The 1D surfaces were converged with erel = 5 9 10-3 and eabs = 5 9 10-7, the 2D surfaces were converged with erel = 2 9 10-2 and eabs =

2 9 10-6 and the 3D surface was converged with erel = 1 9 10-1 and eabs = 1 9 10-5
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evaluation points increases up to about 900 (still only 70%

of the points required for Grid A) while the associated

MAD equals the one for the Grid B calculation. When the

‘‘tight’’ set of thresholds is adopted, the 1D, 2D and 3D

surfaces require about 60 (6 iterations), 496 (4 iterations)

and 336 (2 iterations) potential energy evaluations

respectively. The CPU time used in the ADGA (excluding

the time required for the single point calculations) was

about 100 s,3 the VSCF calculations required about 50 s

and while the rest was used in the steps of grid update and

convergency checking.

Once again, we notice that water is such a well known

and simple system that optimal grids could be designed

manually. Nonetheless, the results suggests that the ADGA

method is capable to provide a high efficient, general and

black-box strategy.

5.4 Difluoromethane

We consider the fundamental vibrational frequencies of

difluoromethane. Potential energy values have been com-

puted by means of DFT calculations using the DALTON

quantum-chemistry program [26] and the CAM-B3LYP

exchange-correlation potential [48]. The computational

details are the same as those in Ref. 8 and the results there

presented were addressed.

In Table 6, the VCI[gs,4] values obtained with the PES

constructed with standard grid are used as reference. In

the adaptive construction of the PES we used different

sets of thresholds (‘‘loose’’ and ‘‘tight’’ in Table 6). The

agreement between the different sets of computed vibra-

tional frequencies is fair, but the highly automatized

ADGA uses 1/6 of the evaluation points requested with

the static grid approach. Whereas 10,776 single-point

calculations are required by the grid-sampling algorithm

of [8], the adaptive procedure is converged after only

1,786 single-point calculations (1D surfaces: 117 single

points, 5 iterations; 2D surfaces: 845 single points, 3

iterations and 3D surfaces: 824 single points, 2 iterations).

In spite of the great reduction in the number of single

point calculations required, the MAD and MaxAD with

respect to the reference values are found equal to 3.2 and

7.8 cm-1. The use of a tighter set of thresholds improves

the agreement and the differences with the static grid

results are smaller than 1.0 cm-1. Such accuracy is

obtained with a consistently lower number of single-point

Table 6 Fundamental vibrational frequencies of difluoromethane (cm-1) computed with ADGA, relative to the values computed with a standard

grid

Mode Standarda ADGAb

Thresh Loosec Tightd Tightd,e

10,776 # calc. 1,786 4,023 6,519

m1 (A1) CH2 symm. stretch 2,945.2 -1.8 -0.6 -0.5

m2 (A1) CH2 scissor 1,498.0 -0.5 -0.1 0.2

m3 (A1) CF2 symm. stretch 1,111.9 -0.2 0.0 0.5

m4 (A1) CF2 bend 525.8 0.1 0.0 0.6

m5 (A2) CH2 twist 1,246.2 -7.5 -0.8 -1.0

m6 (B1) CH2 anti-symm. stretch 3,026.6 7.1 -0.7 -11.5

m7 (B1) CH2 rock 1,169.0 -4.2 0.9 1.1

m8 (B2) CH2 wag 1,428.1 -7.8 -0.9 -1.1

m9 (B2) CF2 anti-symm. stretch 1,076.5 0.1 -0.1 0.6

MAD 3.2 0.5 1.9

MaxAD 7.8 0.9 11.5

Mean absolute deviations (MAD) and the maximum absolute deviations (MaxAD) are reported. The contruction of the 3D PES is based on

CamB3LYP/aug-cc-pVTZ single point calculations. Vibrational calculation: VCI[gs,4]
a Reference values are taken from [8]. Static grid approach: the classical harmonic turning point of the state v = 10 sets the boundaries for each

mode. The grids were constructed according to the scheme (481)(241)(121), with a Fine Grid 8 times more dense (see [8] for details)
b The lowest two VSCF modals for each vibrational mode are used in the construction of the average density. eq was set to 10-3

c The 1D surfaces were converged with erel = 5 9 10-3 and eabs = 5 9 10-7, the 2D surfaces were converged with erel = 1 9 10-1 and

eabs = 1 9 10-5 and the 3D surfaces were converged with erel = 3 9 10-1 and eabs = 3 9 10-5

d The 1D surfaces were converged with erel = 5 9 10-3 and eabs = 5 9 10-7, the 2D surfaces were converged with erel = 5 9 10-2 and

eabs = 5 9 10-6 and the 3D surfaces were converged with erel = 1 9 10-1 and eabs = 1 9 10-5

e The PES includes 4D mode couplings, the 4D surfaces were converged with erel = 3 9 10-1 and eabs = 3 9 10-5

3 On a Opteron 2.2 GHz processor, 2 GB memory RAM.
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calculations (1D surfaces: 117 single points, 5 iterations;

2D surfaces: 1,418 single points, 4 iterations and 3D

surfaces: 2,488 single points, 3 iterations); clearly the

computational efficiency of the adaptive approach does

not compromise the accuracy of the results. Concerning

the time spent in the ADGA itself (excluding the time for

the single point calculations) 15 CPU min were needed,

see footnote3 among them the VSCF calculations required

3 min. The cost of the ADGA itself is negligible com-

pared to the potential saving of the many electronic

structure single points.

Due to the ability of the adaptive procedure to handle

unimportant mode combinations with the explicit compu-

tation of a relative small amount of points, the inclusion of

the four-mode couplings terms in the approximated PES is

now feasible without an overwhelming number of evalua-

tion points. In particular only 2 of the 126 four-mode

couplings were not converged after the first iteration. The

construction of the PES up to the four-mode coupling terms

was carried out as an extension of the previously described

‘‘tight’’ three-mode PES, and the four-mode terms required

two iterations and 2,496 additional evaluation points

leading to a total number of 6,519 single point calculations.

It is interesting to note that the number of additional points

for the 4 mode terms is smaller than the total number of

points required for one-, two-, and three-mode couplings.

The vibrational energies obtained with a VCI[gs,4]

calculation using the four-mode potential are found in

good agreement with the data obtained with the three-

modes PES, except for the CH2 anti-symmetric stretch.

Clearly, a direct comparison between the values obtained

with a 3D- and a 4D-PES is unfair, but it shows that at

least for one of the fundamental frequencies the mode

combination range was not converged. This appears

consistent with the observation that the CH2 anti-sym-

metric stretch mode was present in both the four-mode

combination terms not converged within the first iteration

of the procedure. In order to check that the excitation

level of the VCI[gs,4] was adequately balanced to the

potential containing also four-mode terms, a VCI[gs,5]

calculation was carried out and the results confirm the

analysis based on the VCI[gs,4] data.

5.5 Pyrimidine

As final test case, we consider the 24 fundamental vibra-

tional frequencies of pyrimidine (1,3-diazine). The single

point calculations needed for the construction of the PES

(including the two mode couplings) were computed by

means of DFT adopting the hybrid meta GGA functional

M06 [49] and the Dunning/Hay double zeta basis sets

improved with polarization functions [50] as available in

GAMESS suite of codes [27].

The reference values for this test were computed at the

VMP2 level of theory as described in Sect. 4 and adopting

a PES representation obtained with the static grid approach.

Such PES was constructed according to the scheme

(241)(121) [8], with a Fine Grid, 8 times more dense and

placing the boundaries for each mode at the classical har-

monic turning points of the state v = 10, and it required a

total amount of 40,321 single point calculations. In order to

investigate the quality of the potentials constructed with the

ADGA, the fundamental frequencies obtained in the

vibrational calculations where compared to the reference

values and the mean absolute deviation and the maximum

absolute deviation were computed for each of the PES.

Table 7 shows the fundamental frequencies computed with

each of the PES here described.

Three PES representations, named ‘‘A’’, ‘‘B’’ and ‘‘C’’,

were constructed with the adaptive approach adopting

tighter and tighter thresholds4 and Gaussian basis sets in

the VSCF calculations. The three PESs required 5,181,

8,507 and 15,839 single point calculations, respectively.

Moreover, regardless to the set up, the convergence was

achieved within 6 iterations for the monodimensional grid

and within 4 iterations for bidimensional ones.

As expected, the statistical analysis in terms of MAD

and MaxAD revealed that the fundamental frequencies,

computed with the PES obtained iteratively, approach the

reference values as the thresholds get tighter and the

number of calculations increases. With the ‘‘A’’ potential,

the MAD and MaxAD were found equal to 4.78 and

19.47 cm-1, respectively, while if the ‘‘B’’ PES was used,

these quantities decreased to 2.29 and 6.41 cm-1, respec-

tively. Finally, with the potential constructed with the

tightest set of thresholds, ‘‘C’’, a MAD of 0.79 cm-1 and a

MaxAD of 4.29 cm-1 were computed with respect to the

reference set. Concerning the time spent in the ADGA

(excluding the time for the single point calculations) for the

‘‘B’’ and ‘‘C’’ PES 45 and 100 CPU min were needed

respectively see footnote3 of which the VSCF calculations

required about 15 min in both cases.

4 A: the 1D surfaces were converged with �rel ¼ 1� 10�2 and �abs ¼
1� 10�6; whereas the 2D surfaces were converged with �rel ¼
2:5� 10�1 and �abs ¼ 2:5� 10�5: Gaussian basis sets were used in

the VSCF calculations. B: the 1D surfaces were converged with �rel ¼
5� 10�3 and �abs ¼ 5� 10�7; whereas the 2D surfaces were

converged with �rel ¼ 1:2� 10�1 and �abs ¼ 1:2� 10�5 Gaussian

basis sets were used in the VSCF calculations. C: the 1D surfaces

were converged with �rel ¼ 3� 10�3 and �abs ¼ 3� 10�7; whereas

the 2D surfaces were converged with �rel ¼ 5� 10�2 and �abs ¼
5� 10�6 Gaussian basis sets were used in the VSCF calculations. D:

the 1D surfaces were converged with �rel ¼ 5� 10�3 and �abs ¼
5� 10�7; whereas the 2D surfaces were converged with �rel ¼
1:2� 10�1 and �abs ¼ 1:2� 10�5 HO basis sets were used in the

VSCF calculations.
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In order to investigate the effect of the basis set in the

vibrational calculations during the ADGA, a fourth iterative

PES, ‘‘D’’ was constructed matching the threshold of ‘‘B’’

but using HO functions in the VSCF calculations. The

construction of ‘‘D’’ required 9,351 single point calculations

and the analysis of the frequencies confirmed the equiva-

lence with the quality achieved with the PES ‘‘B’’. For the

pyrimidine molecule, it was therefore found that the basis set

used in the vibrational calculation has little impact to the

quality of the final results, confirming that the Gaussian basis

sets may successfully replace the HO basis sets in ADGA

vibrational calculations even when the latter are well-suited

as in this specific case.

6 Summary and outlook

A new and highly black-box algorithm for constructing

accurate semi-global analytical representations of potential

energy and molecular property surfaces for use in vibra-

tional structure calculations has been implemented and

tested on a selection of model potentials as well as on

water, difluoromethane and pyrimidine.

The algorithm has full flexibility with respect to mode

coupling expansion of the potential and it has been fully

integrated with the methods and techniques previously

investigated by this group [2, 8, 30]. The main source of

novelty of the ADGA resides in the use of the density as

guidance for the definition of the configurational space

where the potential is evaluated and in the definition of

energy contributions as testing quantity to determine the

convergence of the PES.

The use of localized Gaussians as primitive basis func-

tions has been explored as well. The results demonstrate

that the localized basis sets perform at least as good as the

global sets in the well-conditioned problems whereas the

drawbacks of the HO global basis set are avoided.

The robustness and reliability of the engine generating

the PES has been tested in the generation of both mono

and multidimensional surfaces. The tests demonstrate the

high flexibility and robustness of the proposed approach

and the ADGA is found to be accurate and cost-effective

with respect to the number of evaluation points. In par-

ticular, the algorithm allows for inspection of higher mode

couplings where all the many unimportant terms auto-

matically will be treated with only a minimal number of

points.

With this study, we hope to initiate the development of

new ways for optimal PESs construction with algorithms

requiring a small number of numerical thresholds as

opposed to manual system-dependent optimization.

The basic ideas underlying the adaptive approach pre-

sented in this article can be combined with several other

strategies for efficient construction of potential energy

surfaces including multilevel approximations and Shepard

interpolation technique. In particular, we are currently

considering pre-screening of mode combination such that

unimportant mode-combinations are not evaluated [5–7,

20] from the outset. The adaptive method may also be

extended to use correlated densities and simultaneous

convergence of the mono and multidimensional surfaces.

Thus, the adaptive strategy outlined in the article is

expected to be very useful in applications to both energies

and properties of extended molecular systems. Work is

underway for systems with up to hundred atoms.
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Table 7 Fundamental vibrational frequencies of pyrimidine (cm-1)

computed with ADGA, relative to the values computed with a stan-

dard grid

Mode Reference ADGAa

Aa Ba Ca Da

# calcs. 40,321 5,181 8,507 15,839 9,351

1 A1 2,976.11 -1.60 0.00 0.31 0.00

2 A1 2,974.17 -5.00 -1.99 -0.20 -1.99

3 A1 2,964.55 -1.20 3.29 4.29 3.29

4 A1 1,606.37 -2.22 -1.46 -0.26 -1.46

5 A1 1,464.98 -5.54 -3.29 -0.58 -3.28

6 A1 1,144.85 -4.37 -1.37 -0.15 -1.37

7 A1 1,058.10 -1.33 -0.58 -0.21 -0.58

8 A1 983.53 -11.97 -6.41 -2.34 -6.40

9 A1 678.03 -3.48 -1.49 -0.53 -1.49

10 A2 980.07 -19.47 -3.38 -0.51 -3.38

11 A2 395.62 -2.28 -1.67 -0.21 -1.67

12 B1 1,027.51 0.78 -2.07 -1.85 -2.07

13 B1 990.04 -5.65 -0.95 0.03 -0.95

14 B1 825.78 -4.26 -4.67 -0.87 -4.67

15 B1 729.46 -7.41 -2.82 -0.24 -2.82

16 B1 346.32 -5.24 -1.73 -0.13 -1.73

17 B2 2,955.03 -1.24 1.78 2.25 1.79

18 B2 1,602.21 -1.88 -1.36 -0.29 -1.36

19 B2 1,421.64 -3.02 -1.93 -0.37 -1.92

20 B2 1,353.41 -10.92 -5.21 -1.05 -5.21

21 B2 1,258.79 -2.40 -0.97 -0.33 -0.97

22 B2 1,219.13 -6.49 -2.25 -0.98 -2.25

23 B2 1,074.63 -5.06 -3.05 -0.35 -3.05

24 B2 612.30 -1.95 -1.20 -0.62 -1.20

MAD 4.78 2.29 0.79 2.29

MaxAD 19.47 6.41 4.29 6.40

Mean absolute deviations (MAD) and the maximum absolute devia-

tions (MaxAD) are reported. The construction of the 2D PES is based

on M06/DZV single point calculations. Vibrational calculation:

VMP2
a See footnote 4 for the ADGA thresholds
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Appendix

Integrals for distributed Gaussian basis sets

Gaussian integrals can be easily done analytically from a

few standard integrals (
R1
�1 e�kx2

dx ¼
ffiffi
p
k

p
;
R1
�1 xne�kx2

dx ¼ ð� d
dkÞ

n=2 ffiffi
p
k

p
with n an even positive integer number)

and the fact that the product of two Gaussians is another

Gaussian:

GijðxÞ ¼ GiðxÞGjðxÞ ¼
2fij

p

� �1
4

expð�fijðZi � ZjÞ2Þ

�
2ðfi þ fjÞ

p

� �1
4

expð�ðfi þ fjÞðx� ZijÞ2Þ ð22Þ

with

fij ¼
fifj

fi þ fj

ð23Þ

Zij ¼
fiZi þ fjZj

fi þ fj

ð24Þ

The overlap integrals are

Oij ¼ hGijGji ¼
Z1

�1

G	i ðxÞGjðxÞ dx

¼ 4fij

ðfi þ fjÞ

� �ð1
4
Þ
expð�fijðZi � ZjÞ2Þ ð25Þ

Clearly, the basis set of distributed Gaussians is a non-

orthogonal basis with overlaps decaying fast with the

distance between the centers of the Gaussians and with

increasing exponents. Other integrals are

ðxnÞij ¼ hGijxnjGji ¼
Xintðn=2Þ

k¼0

n
2k

� �
ð2k � 1Þ!!

2kðfi þ fjÞk
Zn�2k

ij Oij

ð26Þ
d

dx

� �

ij

¼ hGijd=dxjGji ¼ 2fjOijðZj � ZijÞ ð27Þ

Tij ¼ �
1

2
hGij

d2

dx2
jGji

¼ fjOij 1� 2fj

1

2ðfi þ fjÞ
þ Z2

ij � 2ZjZij þ Z2
j

� �� �

ð28Þ

with ð2k � 1Þ!! ¼ ð2k � 1Þ � ð2k � 3Þ. . .� 1 and 0!! ¼ 1:
Other integrals have to be computed if the Hamiltonian

contains Watson kinetic energy terms, which can be easily

derived from the integrals listed above:

hGijxn d

dx
jGji ¼ �2fjhGijxnþ1jGji þ 2fjZjhGijxnjGji ð29Þ

hGij
d

dx
xnjGji ¼ nhGijxn�1jGji þ hGijxn d

dx
jGji ð30Þ

hGij
d

dx
xn d

dx
jGji ¼ ð4f2

j Z2
j � 2fjðnþ 1ÞÞhGijxnjGji

þ 2nfjZjhGijxn�1jGji
þ 4f2

j hGijxnþ2jGji � 8f2
j ZjhGijxnþ1jGji

ð31Þ

When fitting with scaled coordinates all these integrals

are multiplied by a common factor of ð
ffiffiffiffi
x
p
Þn when the

scaled coordinate x enters with a power of n.
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